

DSA AS A COMPLEMENTARY TECHNIQUE FOR **CONTACT HOLE PATTERNING**

ROEL GRONHEID, ARJUN SINGH, JOOST BEKAERT, TODD YOUNKIN*, SAFAK SAYAN*, NADIA VANDENBROECK, BOON TEIK CHAN, **GEERT VANDENBERGHE**

* INTEL ASSIGNEE AT IMEC

SCOPE OF THIS TALK

DSA and **EUV**:

competing, complementing, enabling?

Use case:

Contact holes patterning using ArFi/EUV pre-patterns followed by a DSA process.

WHAT IS 'DIRECTED SELF ASSEMBLY'?

SELF-ASSEMBLY OF BLOCK COPOLYMERS IN THE BULK

Block Copolymers are macromolecules formed by two or more chemically distinct polymer chains joined by a covalent bond

Poly(styrene-*b*-methyl methacrylate)

Structures represent thermodynamic minima

Dense features - 3 to 50 nm length scale

How to control 'preferred' feature type, size and pitch?

SELF-ASSEMBLY OF BLOCK COPOLYMERS IN THE BULK

BCP: A and B in separate segments

$$-(A)_n - (B)_m$$

n/m determines phase

- Lamellar for LS
- Cylinders for CH

n+m determines

• pitch (and CD)

Feature, CD and pitch are in the bottle - 'Brain in the bottle', ©Ralph Dammel

FEATURE TYPE AND CD IN THE BOTTLE FREQUENCY ANALYSIS

Frequency analysis on self-assembled BCP material allows to determine L_0 and check phase separation quality.

OUTLINE

Introduction

Contact Hole Shrink (grapho-epitaxy)

Templated Process (grapho-epitaxy)

Honeycomb Process (chemo-epitaxy)

Summary

OUTLINE

Introduction

Contact Hole Shrink (grapho-epitaxy)

- ▶ Homopolymer blend and block co-polymer
- ▶ Demonstration of electrical functionality

Templated Process (grapho-epitaxy)

Honeycomb Process (chemo-epitaxy)

Summary

TWO DSA OPTIONS TO COMPARE

POLYMER BLEND & PS-PMMA BCP

	Blend type (PolymerA/PolymerB)	BCP type (PS-b-PMMA)	
Polymer phase separation			
	 No specific dimension, morphology, or periodicity 	 Intrinsic dimension and pre- determined morphology 	
CH Shrink	Guide pattern Polar polymer Polar polymer Polar polymer remains for	Guide pattern PS	
	pattern shrink and less polar polymer is removed	shrink and PMMA is removed	
Development	Organic solvent	Dry developmentUV irradiation with polar solvent	
Anneal condition	• 120 -150 °C	• 200 -250 °C	

EVEREST28 ELECTRICAL TEST VEHICLE

LI2-VA0-MTI SHORT LOOP

Want to leverage IMEC's existing 28 nm node infrastructure in order to electrically test VA0 layers built with C/H DSA.

EVEREST28 ELECTRICAL TEST VEHICLE

VAO STACK, DSA, & PATTERN TRANSFER BASED ON IMEC STD PROCESS

INTEGRATED PROCESS LOOKS GOOD

Decreasing

POLYMER BLEND - BEHAVIOR THROUGH DOSE

Dose	18 mJ/cm²	22 mJ/cm ²	26 mJ/cm ²
Resist (Only) + Tapered Etch	53,1	39.9	28.7
Resist + DSA Blend Shrink + Tapered Etch	36.0	26.2	19.9

 \sim 35% shrink from DSA & \sim 30% shrink from Etch is observed. Min DSA CD \sim 20-25 nm, post-Etch min CD \sim 20 nm, no missing contacts.

E-TEST RESULTS BLEND – KELVIN

DSA IS YIELDING! STRONG TREND VS. CD OBSERVED

Excellent match of Resistance vs CD data of DSA-processed structures with litho-only reference. Current limit is ±30nm CD (post-etch)

E-TEST RESULTS BLEND – 10K CHAIN

DSA IS YIELDING! NO STRONG DIFFERENCE BETWEEN DSA/NO-DSA

Post Etch CD (nm) of Staggered XSEM C/H ('55P90-110')

"It's Alive!" - Dr. Henry Frankenstein

PS-PMMA BLOCK COPOLYMER SYSTEM

EV28-VA0 BCP DSA

Our BCP Flow Is yielding options for EV28-VA0 CDs < 20 nm

Post-DSA LCDU looks very promising.

Pattern transfer studies are currently ongoing.

Open hole rate and placement accuracy are main figures of merit for further optimization.

CH SHRINK USING BCP

CLOSED CONTACT HOLES?

Surface treatment for affinity control and wet development in TEL track shows a greatly improved 'open contact hole rate'.

OUTLINE

Introduction

Contact Hole Shrink (grapho-epitaxy)

Templated Process (grapho-epitaxy)

▶ Via/cut patterning at sub-EUV resolution

Honeycomb Process (chemo-epitaxy)

Summary

GRAPHO-EPITAXY FLOW

TEMPLATED DSA FOR HOLE MULTIPLICATION

P.-S. Wong et al. – Stanford/AMAT

Gridded Layouts -193i + Pitch Division + DSA Cuts with HVM DSA

Y. Borodovsky - Intel

FLOW FOR TEMPLATED DSA

SOC: spin-on carbon

SOG: spin-on glass

FLOW FOR TEMPLATED DSA

After litho

After etch into SOG/SOC

TEMPLATED PROCESS

2-HOLE FEATURES

Very strong correlation between pre-pattern quality and position accuracy, open CH rate. The pre-pattern may require EUV resolution.

TEMPLATED PROCESS

IMPACT OF PRE-PATTERN QUALITY ON CONFINEMENT

Very strong correlation between pre-pattern quality and position accuracy, open CH rate. The pre-pattern may require EUV resolution.

OUTLINE

Introduction

Contact Hole Shrink (grapho-epitaxy)

Templated DSA (grapho-epitaxy)

Honeycomb Process (chemo-epitaxy)

Dense hexagonal array patterning

Summary

HONEYCOMB PROCESS

CHEMO-EPITAXY CH FLOW

This process can be used of contact hole healing, missing contact hole repair and contact hole multiplication.

CLOSED CONTACT HOLES IN EUV

Multilayer blank defects

30nm hp contacts printed with NXE:3100

Mask review with AFM

EUV variability due to stochastic effects

30nm hp contacts at 20mJ/cm2

Absorbed Photon Density

Resist profile

HONEYCOMB PROCESS

MISSING HOLE REPAIR VIA 1:1 PATTERNING

Pitch 58 nm

EUVL pre-pattern

Post DSA of BCPA

The ability of our flow to repair missing holes in an EUV pre-pattern is demonstrated, and could help solving the ML defect/variability issues.

LOCAL CD NON-UNIFORMITY

LCDU Io=1.7nm DtS=22mJ/cm²

'fast resist'

'slow resist'

LCDU I_O=1.0nm DtS=53mJ/cm²

0.33NA

LCDU REPAIR VIA 1:1 PATTERNING

ENABLING LOW DOSE EUV RESISTS

EUVL pre-pattern I σ LCDU = 2.3 – 2.4nm

Post DSA of BCP $I \sigma LCDU = 1.4 - 1.5$ nm

LCDU of DSA patterns largely depends on the BCP quality. We expect the post-DSA LCDU to improve as we transition to BCPs with sub-50nm pitch (NXE:3300). DSA may enable working with a higher LCDU EUV pre-pattern (ie fast resist!).

LCDU REPAIR CONTD.

UPTO 50% LCDU IMPROVEMENT

imec

FREQ. MULTIPLICATION SCHEMES

For L_0 = 30nm we need 52nm pitch pre-pattern for 3x and 60nm pitch for 4x frequency multiplication

3X FREQUENCY MULTIPLICATION

4X FREQUENCY MULTIPLICATION

Post Litho

Pitch 60 nm 16 mJ/cm²

27 nm Average CD > 3 nm $I \sigma$ LCDU

Post DSA

Pitch 30 nm

13 nm Average CD < 0.5 nm $I \sigma$ LCDU

100k mag

OUTLINE

Introduction

Contact Hole Shrink (grapho-epitaxy)

Templated DSA (grapho-epitaxy)

Honeycomb Process (chemo-epitaxy)

Summary

SUMMARY

Very good progress in materials/process

- DSA truly made it from the lab to the fab
- Focus now is on increasing process window by neutral layer material and etch process optimization

DSA as a competitor

▶ DSA can achieve EUV resolution starting from ArF(i) guide patterns

DSA as a complementary technique

- ▶ Pre-pattern quality of EUV lithography seems mandatory to guarantee pattern placement in the templated process (better confinement)
- DSA can clearly play a role in rectifying/healing the EUV resist image

DSA as an enabler for EUV lithography

▶ Low LCDU can be achieved using a fast resist and DSA, which could be key enabler for EUV

ACKNOWLEDGEMENTS

Material Suppliers

- AZ-EM
- **▶** JSR
- ▶ TOK

TEL etch and Clean Track

Doni Parnell, Ainhoa Romo Negreira, Mark Somervell, Kathleen Nafus